Towards a Shared Ledger Business Collaboration Language based on Data-Aware Processes

---- or ----

What does it mean for Services Research if all parties Share a single Database?

Richard Hull (IBM Research) In collaboration with: Vishal S. Batra, Yi-Min Chee, Fenno F. Terry Heath III (IBM Research) Alin Deutsch, Victor Vianu (UCSD)

And drawing on many discussions with: Yao Liang Chen, Pralhad Deshpande, Yuichi Nakamura, Krishna Ratakonda, Jianwen Su, Noi Sukaviriya, Shin Saito, Takaaki Tateishi

11 August 2016 @ ICSOC in Banff, Canada Version v10

How do organizations collaborate in today's world?

By exchanging documents, in many cases on paper:

- Trade finance: letter of credit, export documents (eg., SWIFT MT700,...)
- Logistics/Supply Chain: Purchase Order (EDI 850), Load Tender (EDI 204), Tender Response (EDI 990), ...
- Mortgage & Loan processing: many scanned PDF's

Are these simply messages exchanged between services?

• No, because they persist, and are referred to at later times

Blockchain (for businesses) will dramatically streamline data/document sharing

- Blockchain provides a trusted repository for holding persistent data
- Blockchain enables selective privacy
- Blockchain will enable deep efficiencies

How will this seismic shift in business collaboration impact the Services Research Community ?

One broad area for Services Research contributions:

Business-Level Language and Framework

- Blockchain today is programmed using Turing-complete languages such as GOLANG, Java, ???
- Some domain-specific languages are emerging ...

We need

- Principled approach for data-centered services & collaborations
- Domain-specific language aimed at business users
- Workbenches for business analysts to understand, create, test, modify the "smart contracts" that run on Blockchain
- Foundational understanding of biz-level "smart contracts"

Agenda

- Blockchain enables a new level of trust & communication
- What is Blockchain, and why is it useful for Business Collaborations?
- Logical separation between Blockchain mechanics and Biz-level programming
- Artifact-centric paradigm as starting point for Business Collaboration Language
- Research challenge areas
 - Language design
 - Reasoning about artifacts
 - Relationship to natural language contracts
- Conclusions

• Suppose that a company in Kenya is exporting pineapples to an importer in Rotterdam ...

- At least 4 parties, often more
 - Exporter
 - Exporter's Bank
 - Importer's Bank
 - Importer
 - There may be 10's of parties
- Kinds of documents
 - Order
 - Letter of Credit
 - Export documents
- Draft
- ...
- Today
 - Some documents communicated electronically
 - Other documents sent by air courier

From "International Financial Management" by Jeff Madura

6

Suppose that a company in Kenya is exporting pineapples to an importer in Rotterdam ...

From "International Financial Management" by Jeff Madura

Suppose that a company in Kenya is exporting pineapples to an importer in Rotterdam ...

From "International Financial Management" by Jeff Madura

Suppose that a company in Kenya is exporting pineapples to an importer in Rotterdam ...

- At least 4 parties, often more
 - Exporter
 - Exporter's Bank
 - Importer's Bank
 - Importer
- Kinds of documents
 - Order

- Some documents communicated electronically
- Other documents sent by air courier

From "International Financial Management" by Jeff Madura

9

Before Blockchain

With Blockchain

- Private copies of collaboration data
 - ightarrow Disputes can take month+ to resolve
- Private copies of collaboration processing logic
 - ightarrow Trust is based on binary relationships

- Single shared copy of collaboration data
 - \rightarrow Disputes can be resolved in a day
- Single shared copy of collaboration processing logic
 - \rightarrow Trust becomes based on broadly visible shared data
- Copyright © IBM 2016

Many application areas

- Trade Finance
 - Trust between numerous parties, dispute resolution
- Supply chain/logistics
 - Non-disputable order tracking, dispute resolution
 - Important to both advanced and developing countries
- Mortgage processing
 - Capture machine readable data once; From redundant paper copies to single source of truth
- Certified Emissions Reduction (CER)
 - > Enabling manufacturers to certify that they are producing product with low carbon footprint
- Food supply
 - Provenance from farm to fork
- Healthcare

. . .

- More solid, robust basis for electronic health records
- Education (especially in developing countries)
 - Accurate, non-disputable student & teacher records

Agenda

- Blockchain enables a new level of trust & communication
- What is Blockchain, and why is it useful for Business Collaborations?
- Logical separation between Blockchain mechanics and Biz-level programming
- Artifact-centric paradigm as starting point for Business Collaboration Language
- Selected research challenge areas
- Conclusions

12

A highly selective & brief history of Blockchain

Bitcoin

- Introduces Blockchain paradigm as basis for a crypto currency
- Sole focus is on possession/transfer of Bitcoins
- Privacy guaranteed for currency holders
- Exchanges to trade Bitcoins for state-provided currencies (\$, ϵ , ¥, ...)
- Etherium a Swiss nonprofit, launched in 2014
 - General purpose, custom built Blockchain: ~7000 nodes
 - Crypto currency is called "Ether"
 - Framework includes notion of "fuel" or "gas money" pay for transactions along the way
- "The DAO" hack
 - A Distributed Autonomous Organization (DAO) can be set up on Etherium
 - Participants can contribute funding, and collectively vote on investments
 - "The DAO" launched on April 30, 2016, by German company Slock.it
 - By May 27 the DAO at raised \$150M
 - An attacker drained 3.6M ether, worth about \$70M, by June 18
 - Value of ether dropped from \$20 to \$13
- HyperLedger
 - Launched by the Linux Foundation Dec 2015
 - 30 founding members, including: Accenture, Cisco, Digital Asset Holdings, Fujitsu, IBM, Intel, J.P. Morgan, R3, SWIFT, Wells Fargo, ...

http://ethernodes.org/network/1

Etherium Blockchain itself did not show vulnerability nor hacking

 The smart Contract of "The DAO" was hacked

Blockchain 101 (with bias towards Hyperledger) (1 of 3)

- A blockchain provides
 - 1. High reliability
 - 2. Shared single source of truth
 - 3. Trusted
 - 4. Selective privacy
 - 5. Non-repudiable data updates

- A blockchain consists in a network of servers
 - They may not trust each other at level of individuals
- Blockchain network supports ACID transactions
 Consensus algorithm, such as Practical Byzantine Fault Tolerance (PBFT)
- Blockchain network supports selective privacy
 - Deep usage of encryption technologies
 - Selective access to data and service calls
 - Often, the "smart contracts" are broadly visible)

Blockchain 101 (with bias towards Hyperledger) (2 of 2)

Blockchain 101 (with bias towards Hyperledger) (3 of 3)

- What makes Hyperledger different?
 - No built-in crypto currency
 - Cost of processing & data storage is not of major concern
 - Smaller number of peers
 - Anticipation of many Blockchain networks - spectrum including
 - Some more public
 - Some more private
 - All of the nodes are white-listed within a Blockchain network
 - Transactors are granted an identity by an issuing authority
 - Modular consensus
 - Consensus algorithms are pluggable

http://www.the-blockchain.com/docs/Hyperledger%20Whitepaper.pdf

Business Collaboration Language logically above Shared Ledger

Business-Level Smart Contract Language & Framework

Logical Abstraction Separation

- Reminiscent of "Physical Data Independence" in databases
- Proof point: [Weber et. al., BPM 2016]
 - Maps BPMN onto Ethereum blockchian

Agenda

- Blockchain enables a new level of trust & communication
- What is Blockchain, and why is it useful for Business Collaborations?
- Logical separation between Blockchain mechanics and Biz-level programming
- Artifact-centric paradigm as starting point for Business Collaboration Language
 - Business Artifacts and related models
 - ACSI Artifact-Centric Service Interoperation
- Selected research challenge areas
- Conclusions

Business Artifacts with Lifecycles: A way to factor Business Processes and their data that gives unifying, end-to-end view

A logical view that is natural to biz-level stakeholders

Each Artifact type includes info model, lifecycle model, and roles

Cop

- Info model brings together all biz-relevant data about a given artifact type
 - These cut across parties, organizational silos, etc.
 - Provide a common vocabulary across parties, silos
- Lifecycle model shows possible progressions of artifact instance through the business operations
 - Status of Lifecycle is stored in the info model
- Roles have access rights to data & operations
- Biz-level stakeholders can easily query, monitor, use dashboards, and specify rules/policies

There is extensive research on "Data-aware" Business Process

- The use of entities with FSM-based lifecycles appears as early as [K. Robinson 1979] and [C. Rosenquist 1982]
 - > Focus is on Information Systems and System Dynamics rather than modeling modern business operations.
- Business Artifacts (a.k.a., Business Entities with Lifecycles) [Nigam+Caswell 2003, Kumaran et al 2003]
 - Use cases Pharmaceutical, supply chain, manufacturing, finance, je.g., [Bhattacharya et al 2007], ...
 - Systems e.g., BizArtifact open source system [Boaz, Limonad, Gupta 2013]
 - Standards impact of GSM approach on CMMN standard [Marin, _, Vaculin 2012]
 - Foundations e.g., [Bhattacharya et al 2007] [Deutsch et al 2009] [_ et al 2010] [Calvenese et al 2013] ...
 - Collaboration Artifact-Centric Service Interoperation (ACSI) [_, Narendra, Nigam ICSOC 2009]
- Business Objects
 - Very similar to Business Artifacts with FSM lifecycles
 - FlowConnect Object Behavior Model [Redding et al 2007, 2010]
 - > PHIharmonicflows [Kunzle, Reichert 2011] ...
- Active XML Artifacts model
 - Information Model based on (Active) XML [Abiteboul, Segufin, Vianu 2009]
 - Collaboration [Abiteboul et al 2010]
- Case Management
 - > Pallas Athena FLOWer [van der Aalst, Weske, Grünbauer 2007]
 - Adaptive Case Management [Swenson 2010]
 - OMG Case Management and Modeling Notation (CMMN) [2014]

Artifact-Centric Service Interoperation (ACSI) [_, Narendra, Nigam, ICSOC 2009]

- Our Inspiration: EasyChair
- A "hub" that supports numerous conferences

- How to replicate this in arbitrary application areas?
- How do we make it easy for services to "understand" what a hub is doing, how it is working?
- How do we provide systematic access controls?

Artifact-centric Service Interoperation hubs in a nutshell

- Like orchestration, puts a "hub" in the middle of collaborating services
- Unlike orchestration, an ACSI hub:
 - **Establishes a "pseudo-standard"** as the center of a collaboration environment
 - Different service collaborations will need to comply to this standard
 - Enables scalability because of distribution of adaptation
 - Primarily re-active; essentially a structured whiteboard
 - Assumes that the services are "self-motivated" and pro-active
 - Permits service-to-service communication
 - Based on Business Artifacts
 - Demonstrated to simplify understanding of business operations
 - A structured approach to *data* + *process* + *roles*
 - **Data:** Info Model provides skeleton that provides full status snapshot
 - **Process:** Lifecycle Model provides top-down structure for processes, events
 - *Roles*: Info Model + Lifecycle Model provides structure for intricate, conditional access control

Example ACSI Hub for Trade Finance

 The participating services do not have to be artifact-centric

Illustration of Lifecycle & Info Models

Separated lifecycle models are natural backbone for access to services

Letter of Credit

ACSI Views: Limiting what can be seen

ACSI Windows: Limiting which artifact instances can be seen

Examples:

- 1. Importer sees all of it's Orders
- 2. Importer Bank sees all Letters-of-Credit, Export Docs, and Drafts for which it is providing or receiving credit
- 3. Harbor Master sees all Shipments coming in or out of harbor

ACSI service controls: Limiting what participants can do

- E.g., for Importer Bank, we can specify in detail which attributes can be created, read, updated, ...
- Permissions change based on state you are in

Artifacts and ACSI: Providing a robust starting point for a Business-Level Collaboration Framework for Blockchain

- There is also substantial research on the ACSI paradigm
 - Cf. EU-supported ACSI project (2010 to 2013)
- Systems Biz Artifact (open source)
- Foundations

But ... We cannot apply them "out of the box"

- Conceptual models: Blockchain restrictions e.g., synchronous service calls
 - Operational perspective
 - Contractual perspective, including legal and natural language
- Systems: Mapping onto Hyperledger, Ethereum, etc.
- Collaboration/Choreography: Very relevant
- Verification: Different questions

Agenda

- Blockchain enables a new level of trust & communication
- What is Blockchain, and why is it useful for Business Collaborations?
- Logical separation between Blockchain mechanics and Biz-level programming
- Artifact-centric paradigm as starting point for Business Collaboration Language
- Selected research challenge areas
 - Language design
 - Reasoning about artifacts
 - Relationship to natural language contracts
- Conclusions

Requirements on Business-level Smart Contracts Framework

Solution Language

- Intuitive for Business-level users to create and understand smart contracts
 - Example users: Business Analysts, Trade Specialists, Financial Analysts, Supply Chain Specialists, ...
 - Holistic way of representing key business objects, including data, lifecycles, rules, roles
- Linkage between Legal Contractual perspective and Operational perspective
- Linkage to *existing standards*, *e.g.*, *UBL*, *SWIFT*, ...
- Intuitive support for adding variations into existing smart contract specifications
 - Including modifications to business object data, lifecycles, rules
- Modularity & Composability
 - Intuitively natural ways to do "plug and play", and to substitute portions of a smart contract
 - Note: in the future, smart contracts will be created by different organizations and mashed together
- Access Control & Privacy features specified at business level
 - For data
 - For invocable operations

Solution Development & Administration

- Visual editor
- Enable rapid development & modification of production-level solutions
 - Use a fully interpreted paradigm for execution of smart contracts
- Design, develop, deploy, test, refine
- Version management

32

- Ricardian contracts appear relevant
- Emerging CLACK language [Clack et al 2016] aimed at this challenge
- Artifact types can serve as natural composable modules
- Data & lifecycles provide further modularity
- The BizArtifact system [Boaz et al 2013] for artifacts included
- Visual editor
- Fully interpreted implementation of artifacts
- Administration framework

Working hypothesis for a Business Collaboration Language (BCL)

- Leverage Business Artifact / Business Object paradigm
- Information model
 - Nested relations (e.g., represented as JSON)
 - Query/conditions by subset of SQL++ [Ong, Papakanstatinou, Vernous
- Lifecycle model multiple possibilities
 - > Acyclic DAGs with rollback (cf. [van der Aalst, Weske, Grünbauer 200
 - Finite State Machines
 - Guard-Stage-Milestone/CMMN (see [Marin,H.,Vaculin 2011])
 - Active XML
 - Proclets [van der Aalst et al 200?] / BPMN
 - More declarative, e.g., DecSerFlow [van der Aalst et al 2009], DCR Graphs [Hildebrant et al 2011]
 - Other ???
- Access constraints
 - > Data: should be conditioned on Lifecycle status and data values
 - Lifecycle:

33

- Restricted access has not been emphasized in Blockchain literature
- Techniques from ACSI might be adapted opyright © IBM 2016

FSM's as reasonable starting point because

- Adoption: "Everyone" is familiar
- US Office of Financial Research suggests FSMs for financial contracts [Flood, Goodenough 2015]
- Natural mapping from Functional Programming formalization of legal contracts (see below)

Use extended Event-Condition-Action (ECA) rules

- Captures the reactive nature of Blockchain smart contract
- While permitting declarative style

Representative standard - UBL 2.1

- OASIS standard focused on Supply Chain use cases
 - Approved by OASIS in 2013 and as ISO Standard in 2015
 - Adopted by/extended by: EU Public Sector; various procurement frameworks (Norway, Sweeden, EU DIGIT, UK Natl. Health Service, OpenPEPPOL (several Euro countries), Port of Hong Kong, Port of Singapore, ...
 - Supports approx. 45 business process flows and 65 document types
 - For document types: validators, authoring software, parsers, generators
- Focus is mainly on binary relationships/processes, and includes
 - Workflows for order, invoice, shipment, consignment, ...
 - For each workflow, document types for exchanging information
 - The workflows provide the business context within which documents are exchanged
- E.g., "Ordering is the collaboration that creates a contractual obligation between the
 - Seller Supplier Party and the
 - Buyer Customer Party."

UBL 2.1: Figure 21, section 2.6, p. 39

Blockchain allows the documents to be shared . . . enables the documents to support change through time

Example based on Order with multiple Line Items, each shipped separately

Illustration: Three ECA rules that string together

Switch from

A design method for Artifact-centric Smart Contracts (adapted from [Nandi et al 2008])

Agenda

- Blockchain enables a new level of trust & communication
- What is Blockchain, and why is it useful for Business Collaborations?
- Logical separation between Blockchain mechanics and Biz-level programming
- Artifact-centric paradigm as starting point for Business Collaboration Language
- Selected research challenge areas
 - Language design
 - Reasoning about artifacts
 - Relationship to natural language contracts
- Conclusions

A world that we anticipate:

A single collaboration will involve numerous artifact instances, with multiple 1-to-many relationships

Different artifact types designed & maintained by different organizations

Why?

- Making artifact types similar to existing standards, e.g., UBL, SWIFT, ...
- Different kinds of concerns for logistics vs. finance
 Impact:
- Interaction between artifact types must be understood

Reasoning about "Choreographies" of Artifacts (adapting from [Sun,Xu,Su ICSOC 2012], [Su, Sun 2013])

- Suppose that each artifact type is a separate Smart Contract
- In a HyperLedger fabric, communication will be by synchronous service calls

How to develop a framework for specifying desired properties?

- > Design "correctness", auto realization, mechanisms for monitoring, ...
- Key Issue: Need explicit way to model & reason about correlations

Two Key Aspects of Choreography Languages

Conditions involving Data: *For each shipment, if Export Docs obtained by Exporter, then a Draft including that Shipment is generated by Importer Bank*

If the amount is less \$1000 *and additional Shipments pending, then delay Draft*

Instance-level correlation:

Which artifact instances are correlated during the runtime? Who sends messages to whom?

Tangent: How might BPMN "Collaboration" model this?

 This is collaboration diagram for a single Shipment mapping to Draft

- Shipper ExpB ImpB Exp Present Obtain Present Agree to **ExpDocs** ExpDocs ExpDocs Draft & Draft Exp ExpB ExpB ImpB
- In general
 - Grouping of Shipments into Drafts will be random
 - Timing of different Shipments completing, and different Drafts completing will be random
- So, well-formed multi-instance construct cannot be used

Framework for Interacting Artifact Types: Correlation Diagrams

- Two artifact instances are correlated if they are involved in a common collaborative BP instance
 - Messaging only between correlated instances
- Correlations for a collaboration are defined in a diagram, with one artifact as the root or primary process

- Directed edge indicates creation of Artifact instance(s)
- Cardinality constraints are also defined
- Some syntactic restrictions (acyclic, "1" on root, ...)
- Correlations can also be derived

Messages Diagrams

• A message diagram defines message types and sender/receiver of each type

- Includes messages from/to the external parties
- "+" means creation of new BP instance
- Message may have data attributes
 - Path expressions are used to access data contents

Choreography Constraint Example

"For each shipment, if ExpDocs received by Exporter, then eventually a Draft Notification including that shipment is sent to Import Bank"

Reasoning with Choreography Constraints on Artifacts

- This field is still in its infancy
- [Su,Sun 2013] study "Realizability"

Given an artifact message diagram and family C of Choreography Constraints ...

... is there a family of services that "realizes" exactly the runs that satisfy C?

- > Preliminary result: "Yes", if there are no 1-to-many relationships between artifacts
- Question remains open in the general setting

What about Verification ?

Given full artifact system S and family C of Constraints does every run of S satisfy C ?

Verification for artifact-centric models: a representative framework

Given an artifact-based model M and a property P, do all executions of M satisfy P ?

The presence of data leads to an infinite state space

- Verification in general is undecidable
- Several different approaches to restrict expressive power have been developed

Several approaches to verification for data-centric process (see surveys [Calvanese, De Giacomo, Montali 2013], Deutsch, H., Patrizi, Vianu 2014])

- Early results: Focus on "flat" artifacts
 - [Bhattacharya, Gerede, _, Liu, Su 2007] multi-artifact system; PSPACE-complete verification
 - [Zhao, Su, Yan, Qiu 2009] verification of propositional LTL
- Flat artifacts with fixed re-only database
 - [Deutsch, H., Marcus, Patrizi, Sui, Vianu, Zhou, starting in 2009]
 - Strong restrictions, e.g., no dependencies, no arithmetic, focus on $\exists FO$ conditions; LTL+ $\exists FO$ constraints
 - Obtain PSPACE verification by reduction to finite-state model checking

Recent extension

- Hierarchical lifecycle models and artifacts with relation-valued attributes
- [Deutsch, Li, Vianu 2016] Obtain PSPACE verification with reduction to Vector Addition System with States
- Data-Centric Dynamic Systems (DCDS)
 - Bagheri Hariri, Calvanese, De Giacomo, De Masellis, Felli 2011] and others ...
 - Artifacts range over relations, powerful temporal logics
 - Acyclicity conditions guarantee bounded domain
 - [Belardinelli, Lomuscio, Patrizi 2013] Verification of DCDS in context of multi-agent system

Blockchain context brings a different focus -

limited data, access rights, choreography constraints, 1-to-many relationships, ...

Reasoning about views [Abiteboul, Vianu 2015]

- Each participant working on a view
 - Their actions are propagated to the others, according to semantics of the (virtual) global state
- Studying what a participant can infer about the global state, e.g.,
 - As an author, has my paper been accepted?
 - As a PC member, can I tell if a decision was made about my own submission?
- Model
 - Global database is set of relations with keys
 - Each view sees projections, with entire key present
 - Using PLTL-FO "P" for "previous"
- For fixed workflow schema, reasoning in PSPACE

Agenda

- Blockchain enables a new level of trust & communication
- What is Blockchain, and why is it useful for Business Collaborations?
- Logical separation between Blockchain mechanics and Biz-level programming
- Artifact-centric paradigm as starting point for Business Collaboration Language
- Selected research challenge areas
 - Language design
 - Reasoning about artifacts
 - Relationship to natural language contracts

Conclusions

THESE ARE REALLY SMART PEOPLE, said one lawyer who works with startups.

EVERYTHING can be reduced to an ALGORITHM SPARED

and LEGAL DOCUMENTS are not going to be TECHCRUNCH

From <u>www.legalese.com</u> home page

Legal contracts: what makes them different?

- Binary relationship
 - Holder"
 - "Counterparty"
- Contract based along time dimension
 - As they move through time ...
 - ... people make choices
 - ... result is essentially a new contract
- Contracts are exchanged, combined, traded, ...
- Contract may depend on external "random" variables
 - E.g., exchange rates, stock prices
- A focus of financial industry is

What is the current value of this contract ?

- Must incorporate uncertainties of future
- Various statistical techniques available

On 15 July 2000 you may choose between:

 D_1 Both of:

 $D_{11}\,$ Receive £100 on 29 Jan 2001.

 D_{12} Pay £105 on 1 Feb 2002.

 $D_2\,$ An option exercisable on 15 Dec 2000 to choose one of:

 D_{21} Both of:

 $D_{211}\,$ Receive £100 on 29 Jan 2001.

 D_{212} Pay £106 on 1 Feb 2002.

 $\begin{array}{l} D_{22} \mbox{ Both of:} \\ D_{221} \mbox{ Receive \pounds100 on 29 Jan 2001.} \\ D_{222} \mbox{ Pay \pounds112 on 1 Feb 2003.} \end{array}$

From "How to write a financial contract", S.L. Peyton Jones and J-M. Eber, Proc. Intl. Conf. on Functional Programming, 2000

Functional programming can provide formal abstraction for finance-based contracts

[Peyton Jones, Eber 2000] provides a family of 10 primitive combinators that can be used to formally define contracts

- "and": if you acquire "c1 and c2", then you immediately have both
- "or": if you acquire "c1 or c2", then you must immediately choose to retain one or the other
- "when": if you acquire "when <obs> c", where <obs> is a Boolean-valued observable, then c becomes available to you if/when <obs> becomes true
- "until": "until <obs> c" acts like c until <obs> becomes true. From that moment the contract becomes worthless

This functional programming view enables

- Composability
- Formal reasoning about semantic equivalence

Conjecture: a family of inter-related binary contracts can operationalized using an artifactbased Blockchain implementation

...

Another perspective on mixing "legal" and "smart" contracts

- Distinction made in CoinDesk by Stark [2016]
 - Smart Contract Code: code that embodies how agents want to collaborate, running on a Blockchain
 - Smart Legal Contract: combination of legal wording and executable code that correspond to each other
- Ricardian contracts: an example of Smart Legal Contract
 - Invented by Ian Grigg [2004]
 - "A digital contract that defines the terms and conditions of an interaction between two or more peers, that is cryptographically signed and verified"
 - It is both human and machine readable
 - Has a unique and secure identifier

http://www.webfunds.org/guide/ricardian_implementations.html

Groups like CommonAccord are attempting to create a body of "universal contracts" that can handle essentially all useful kinds of collaborations

Agenda

- Blockchain enables a new level of trust & communication
- What is Blockchain, and why is it useful for Business Collaborations?
- Logical separation between Blockchain mechanics and Biz-level programming
- Artifact-centric paradigm as starting point for Business Collaboration Language
- Selected research challenge areas

Conclusions

Blockchain: A new technology with growing adoption for Business Collaboration

This raises many of the classical questions from Services Research community . . .

... But with a twist:

A persistent shared trusted data store is at the very center of things

- Allows, and forces, a re-thinking of basic services paradigms, such as
 - Orchestration/choreography: is ACSI hub the right abstraction, or something else?
 - Service composition: It's not just about message/conversation compatibility anymore
 - Will Business Artifacts be the unit of composition, or something else?
 - Service design patterns: How to use presence of data to best advantage?

Blockchain: Operational vis-a-vis Legal/Financial perspectives

Two critical observations:

- The courts will always be the remedy of last resort \rightarrow legal perspective is always present
- Almost every operational task has a financial aspect \rightarrow financial perspective is always present

- Brings a new style of challenge to the services community
 - > Service composition: Legal and Financial contracts are interlocking, interdependent
 - Do our current paradigms adequately model this?
 - Formal reasoning/verification: We need to address Legal/Financial patterns (among others)
 - Design/Coding style: How will marriage of legal+code be structured, at macro- and micro- levels